A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus.

  • M.W.H.J. de Been (Creator)
  • Marcel Tempelaars (Creator)
  • W. van Schaik (Creator)
  • Roy Moezelaar (Creator)
  • R.J. Siezen (Creator)
  • Tjakko Abee (Creator)

Dataset

Description

A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor σB is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing σB upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the σB-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of
Date made available17 Dec 2009
PublisherWageningen UR

Cite this

de Been, M. W. H. J. (Creator), Tempelaars, M. (Creator), van Schaik, W. (Creator), Moezelaar, R. (Creator), Siezen, R. J. (Creator), Abee, T. (Creator) (17 Dec 2009). A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus. Wageningen UR.